Generalized Pascal k-eliminated functional matrix with 2n variables
نویسندگان
چکیده
منابع مشابه
Riordan group approaches in matrix factorizations
In this paper, we consider an arbitrary binary polynomial sequence {A_n} and then give a lower triangular matrix representation of this sequence. As main result, we obtain a factorization of the innite generalized Pascal matrix in terms of this new matrix, using a Riordan group approach. Further some interesting results and applications are derived.
متن کاملApproximately generalized additive functions in several variables via fixed point method
In this paper, we obtain the general solution and the generalized Hyers-Ulam-Rassias stability in random normed spaces, in non-Archimedean spaces and also in $p$-Banach spaces and finally the stability via fixed point method for a functional equationbegin{align*}&D_f(x_{1},.., x_{m}):= sum^{m}_{k=2}(sum^{k}_{i_{1}=2}sum^{k+1}_{i_{2}=i_{1}+1}... sum^{m}_{i_{m-k+1}=i_{m-k}+1}) f(sum^{m}_{i=1, i...
متن کاملNew Sums Identities In Weighted Catalan Triangle With The Powers Of Generalized Fibonacci And Lucas Numbers
In this paper, we consider a generalized Catalan triangle de ned by km n 2n n k for positive integer m: Then we compute the weighted half binomial sums with the certain powers of generalized Fibonacci and Lucas numbers of the form n X k=0 2n n+ k km n X tk; where Xn either generalized Fibonacci or Lucas numbers, t and r are integers for 1 m 6: After we describe a general methodology to show how...
متن کاملPhases of N = 1 Supersymmetric SO / Sp Gauge Theories via Matrix Model
We extend the results of Cachazo, Seiberg and Witten to N = 1 supersymmetric gauge theories with gauge groups SO(2N), SO(2N + 1) and Sp(2N). By taking the superpotential which is an arbitrary polynomial of adjoint matter Φ as a small perturbation of N = 2 gauge theories, we examine the singular points preserving N = 1 supersymmetry in the moduli space where mutually local monopoles become massl...
متن کاملGeometrical Interpretation of Constrained Systems
The standard approach to classical dynamics is to form a Lagrangian which is a function of n generalized coordinates qi, n generalized velocities q̇i and parameter τ . The 2n variables qi, q̇i form the tangent bundle TQ. The passage from TQ to the cotangent bundle T ∗Q is achieved by introducing generalized momenta and a Hamiltonian. However, this procedure requires that the rank of Hessian matrix
متن کامل